References

Chen, S., Richardson, J. F. & Buchanan, R. M. (1994). Inorg. Chem. 33, 2376–2382.

Driel, G. J. van, Driessen, W. L. & Reedijk, J. (1985). *Inorg. Chem.* **24**, 2919–2925.

- Driessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 41-43.
- Driessen, W. L., de Graaff, R. A., Ochocki, J. & Reedijk, J. (1988). Inorg. Chim. Acta, 150, 41–45.
- Dyason, J. C., Engelhardt, L. M., Healy, P. C. & White, A. H. (1984). Aust. J. Chem. 37, 2201–2205.
- Enraf-Nonius (1992). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., White, P. S. & Lee, F. L. (1987). Acta Cryst. A43, S-294.
- Haitko, D. A. (1984). J. Coord. Chem. 13, 119-122.
- Healy, P. C., Pakawatchai, C. & White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1917-1927.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kleywegt, G. J., Wiesmeijer, W. G. R., van Driel, G. J., Driessen, W. L., Reedijk, J. & Noordik, J. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2177-2184.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Oberhausen, K. J., O'Brien, R. J., Richardson, J. F. & Buchanan, R. M. (1990). Inorg. Chim. Acta, 173, 145-154.
- Rath, N. P., Holt, E. M. & Tanimura, K. (1986). J. Chem. Soc. Dalton Trans. pp. 2303-2310.
- Sheu, S. C., Tien, M. J., Cheng, M. C., Ho, T. I., Peng, S. M. & Lin, Y. C. (1995). J. Chem. Soc. Dalton Trans. In the press.
- Spek, A. L., Driessen, W. L. & Wiesmeijer, W. G. R. (1988). Acta Cryst. C44, 1567–1569.
- Wei, N., Murthy, N. N., Tyeklár, Z. & Karlin, K. D. (1994). Inorg. Chem. 33, 1177–1183.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 59-61

catena-Poly[dinitratocobalt(II)- μ -2,5-bis-{2-(2-pyridyl)ethynyl}thiophene-N:N'], [Co(NO₃)₂(C₁₈H₁₀N₂S)]₃

WILLEM L. DRIESSEN^a AND THOMAS X. NEENAN^b

^aLeiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands, and ^bAT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

(Received 7 February 1995; accepted 26 June 1995)

Abstract

The single-crystal X-ray structure of a one-dimensional chain of nitrate-coordinated Co ions connected by rigid rod-like N donor ligands is described.

Comment

We have recently begun a program to prepare complexes in which arrays of metal atoms are held together by rigid electron-rich connecting rods (Neenan, Driessen, & Reedijk, 1995). Materials of this type may find application as the building blocks for conducting and photo-conducting solids, or as molecular wires.

Recently, we prepared the ligand 2,5-bis[2-(2pyridyl)ethynyl]thiophene, (I), and report here the crystal and molecular structure of the infinite polymer, (II), that the ligand forms with cobalt(II) nitrate (see Figs. 1 and 2).

In the asymmetric unit $Co_3(L)_3(NO_3)_6$, each Co ion is coordinated to two nitrate ions and to two pyridine N atoms from two different ligands. The Co ions and the ligands form an infinite one-dimensional chain in the [101] direction.

The coordination geometry of the Co ions can be described as highly distorted octahedral, with both pyridine N atoms at distances between 2.06 and 2.09 Å, with two O atoms, one of each nitrate ion, coordinated at distances between 1.98 and 2.06 Å, and another two O atoms, one of each nitrate ion, completing the octahedral coordination at longer distances between 2.36 and 2.52 Å.

In one of the ligands in the asymmetric unit the donor N atoms point in opposite directions, while in the two other ligands the N atoms point in the same direction. The pyridine-thiophene connection is almost linear, as expected for an sp-sp-coupled system. The pyridine and thiophene rings are planar.

Fig. 1. *PLUTON* (Spek, 1992) projection of the asymmetric unit $Co_3(L)_3(NO_3)_6$.

$[Co(NO_3)_2(C_{18}H_{10}N_2S)]_3$

refined, U fixed $w = 1/\sigma^2(F)$

Fig. 2. Numbering scheme of the non-H atoms of the asymmetric unit. Ellipsoids are shown at the 50% probability level.

Experimental

The synthesis of the ligand is reported elsewhere (Neenan et al., 1995). Addition of a filtered solution of 1 mmol of the ligand in absolute ethanol (5 ml) to $Co(H_2O)_6(NO_3)_2$ in absolute ethanol (5 ml) gave deep-purple oblong blocks upon standing at room temperature for 48 h.

Cryst	al	data	
-			

$[Co(NO_3)_2(C_{18}H_{10}N_2S)]_3$	Mo $K\alpha$ radiation
$M_r = 1407.88$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 24
$P2_{1}/c$	reflections
a = 15.51(1) Å	$\theta = 10 - 12^{\circ}$
b = 15.178(5) Å	$\mu = 1.034 \text{ mm}^{-1}$
c = 25.66 (3) Å	T = 293 K
$\beta = 106.9 (1)^{\circ}$	Oblong block
$V = 5780 (8) Å^3$	$0.3 \times 0.2 \times 0.15 \text{ mm}$
Z = 4	Deep purple
$D_r = 1.617 \text{ Mg m}^{-3}$	

Data collection	
Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 7028 measured reflections 7028 independent reflections 2925 observed reflections $[I > 2\sigma(I)]$	$\theta_{max} = 21.95^{\circ}$ $h = -16 \rightarrow 15$ $k = 0 \rightarrow 15$ $l = 0 \rightarrow 26$ 3 standard reflections frequency: 90 min intensity decay: 12.6% (corrected)
Refinement	
Refinement on F R = 0.060	$(\Delta/\sigma)_{\text{max}} = 0.227$ $\Delta\rho_{\text{max}} = 1.1 \text{ e } \text{\AA}^{-3}$

Rennement on F	$(\Delta/\sigma)_{\rm max} = 0.227$
R = 0.060	$\Delta \rho_{\rm max} = 1.1 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.056	$\Delta \rho_{\rm min} = -0.86 \ {\rm e} \ {\rm \AA}^{-3}$
S = 2.271	Extinction correction: none
2921 reflections	Atomic scattering factors
391 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined, U fixed	(1974, Vol. IV, Tables
$w = 1/\sigma^2(F)$	2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

U_{iso}	for C,	Ν,	O; U_{eq}	= (1/	$(3)\Sigma_i\Sigma_i$	E _j U _{ij} a	*a	*a _i .a _j	for	Co and	S
-----------	--------	----	-------------	-------	-----------------------	----------------------------------	----	---------------------------------	-----	--------	---

	r	ν	Z	Uisa/Uea
Col	-0.0684(1)	0.5517(1)	0.33260 (6)	0.053(1)
Co2	-0.2480(1)	0.5963(1)	-0.00302(7)	0.054(1)
Co3	0.5812(1)	0.6355 (1)	0.66784 (7)	0.062 (1)
\$4	0.2700(2)	0.7376(3)	0.5058(1)	0.069(2)
\$5	-0.0315(2)	0.4564(2)	0.1573(1)	0.071(2)
S6	-0.4709(3)	0.5042 (3)	-0.1936(1)	0.091 (3)
N11	0.5307 (6)	0.7069 (6)	0.7221 (4)	0.049 (3)
C12	0.5881 (8)	0.7131 (8)	0.7737 (5)	0.070 (4)
C13	0.5623 (8)	0.7537 (8)	0.8144 (5)	0.061 (4)
C14	0.4804 (9)	0.7875 (8)	0.8062 (5)	0.070 (4)
C15	0.4196 (8)	0.7832 (8)	0.7537 (6)	0.072 (4)
C16	0.4479 (8)	0.7412 (8)	0.7136 (5)	0.051 (4)
C17	0.3861 (8)	0.7369 (8)	0.6599 (6)	0.070 (4)
C18	0.3280 (8)	0.7330 (8)	0.6179 (5)	0.065 (4)
C19	0.2548 (8)	0.7219 (8)	0.5690 (5)	0.060 (4)
C20	0.1708 (8)	0.6956 (8)	0.5648 (5)	0.066 (4)
C21	0.1181 (9)	0.6852 (8)	0.5099 (6)	0.079 (4)
C22	0.1622 (8)	0.7053 (8)	0.4740 (5)	0.058 (4)
C23	0.1299 (8)	0.6956(8)	0.4154 (6)	0.068 (4)
C24	0.1018 (8)	0.6872 (8)	0.3681 (5)	0.057 (4)
C25	0.0657 (8)	0.6847 (8)	0.3095 (5)	0.055 (4)
N26	-0.0118(6)	0.6377 (6)	0.2904 (4)	0.049 (3)
C27	-0.0526(7)	0.6424 (8)	0.2351 (5)	0.058 (4)
C28	-0.0165(8)	0.6884 (8)	0.2013 (5)	0.069 (4)
C29	0.0627 (8)	0.7306 (8)	0.2210 (5)	0.069 (4)
C30	0.1064 (8)	0.7312 (8)	0.2767 (5)	0.063 (4)
N31	0.0370 (6)	0.4793 (6)	0.3823 (4)	0.051 (3)
C32	0.0485 (8)	0.4811 (8)	0.4373 (5)	0.072 (4)
C33	0.1165 (8)	0.4337 (8)	0.4738 (5)	0.061 (4)
C34	0.1732 (8)	0.3867 (8)	0.4557 (5)	0.059 (4)
C35	0.1652 (7)	0.3842 (8)	0.4014 (5)	0.055 (4)
C36	0.0956 (8)	0.4290(7)	0.3648 (5)	0.049 (3)
C37	0.0826 (8)	0.4256 (8)	0.3078 (5)	0.058 (4)
C38	0.0704 (7)	0.4155 (8)	0.2605 (5)	0.056 (4)
C39	0.0517 (7)	0.4012 (8)	0.2029 (5)	0.055 (4)
C40	0.0950 (7)	0.3437 (7)	0.1784 (5)	0.050 (3)
C41	0.0600(7)	0.3460(7)	0.1199 (5)	0.052 (4)
C42	-0.0092(7)	0.4028 (8)	0.1034 (5)	0.051 (3)
C43	-0.0598(8)	0.4234 (8)	0.0488 (5)	0.058 (4)
C44	-0.1030 (7)	0.4408 (7)	0.0043 (5)	0.054 (4)
C45	-0.1506 (8)	0.4601 (8)	-0.0529 (5)	0.053 (4)
N46	-0.2128 (6)	0.5239 (6)	-0.0618 (4)	0.048 (3)
C47	-0.2560(8)	0.5444 (8)	-0.1154 (5)	0.059 (4)

WILLEM L. DRIESSEN AND THOMAS X. NEENAN

C48	-0.2383(8)	0.5001 (9)	-0.1576 (5)	0.071 (4)
C49	-0.1775 (8)	0.4354 (8)	-0.1476(5)	0.067 (4)
C50	-0.1302(8)	0.4139 (8)	-0.0935(5)	0.063 (4)
N51	-0.3007(6)	0.5044 (6)	0.0392 (4)	0.058 (3)
C52	-0.2599 (8)	0.4992 (8)	0.0945 (5)	0.069 (4)
C53	-0.2880(9)	0.4352 (9)	0.1245 (5)	0.079 (4)
C 54	-0.355(1)	0.3821 (9)	0.1024 (6)	0.090 (5)
C55	-0.3985(9)	0.3867 (9)	0.0478 (6)	0.084 (5)
C 56	-0.3687(8)	0.4482 (9)	0.0165 (5)	0.063 (4)
C57	-0.4118(8)	0.4534 (9)	-0.0413(6)	0.072 (4)
C 58	-0.4529(8)	0.4548 (8)	-0.0879 (6)	0.067 (4)
C 59	-0.5042(8)	0.4538 (8)	-0.1432(5)	0.064 (4)
C60	-0.5854(9)	0.4154 (8)	-0.1636(5)	0.073 (4)
C61	-0.6213(8)	0.4269 (8)	-0.2206(5)	0.069 (4)
C62	-0.5674(8)	0.4743 (8)	-0.2435(5)	0.061 (4)
C 63	-0.5792(8)	0.4947 (8)	-0.2976(6)	0.063 (4)
C64	-0.5831(8)	0.5125 (8)	-0.3424(5)	0.062 (4)
C 65	-0.5803 (8)	0.5359 (8)	-0.3966 (5)	0.064 (4)
N 66	-0.5160(6)	0.5940 (6)	0.4007 (4)	0.061 (3)
C67	-0.5101(8)	0.6182 (8)	-0.4492(5)	0.063 (4)
C 68	-0.5700(9)	0.5827 (9)	-0.4979 (5)	0.077 (4)
C 69	-0.6325 (9)	0.5253 (9)	-0.4939 (6)	0.089 (5)
C 70	-0.6416 (9)	0.4996 (9)	-0.4440 (6)	0.085 (5)
N 71	-0.1846 (8)	0.6448 (8)	0.3676 (5)	0.086 (4)
072	-0.1080 (5)	0.6055 (5)	0.3940 (3)	0.070 (3)
073	-0.1976 (5)	0.6455 (5)	0.3173 (3)	0.074 (3)
O74	-0.2314 (7)	0.6748 (7)	0.3928 (4)	0.114 (4)
N 76	-0.1810 (8)	0.4253 (8)	0.2880 (5)	0.086 (4)
077	-0.1423 (5)	0.4837 (6)	0.2661 (3)	0.072 (3)
078	-0.1630 (6)	0.4325 (6)	0.3391 (4)	0.095 (3)
O79	-0.2373 (6)	0.3756 (6)	0.2620 (4)	0.089 (3)
N81	-0.3764 (9)	0.7180 (9)	-0.0267 (5)	0.094 (4)
O82	-0.3529 (6)	0.6628 (6)	-0.0562 (4)	0.088 (3)
O83	-0.3306 (6)	0.7123 (7)	0.0216 (4)	0.113 (4)
O84	-0.4342 (7)	0.7708 (7)	-0.0453 (4)	0.109 (4)
N 86	-0.1001 (7)	0.6874 (7)	0.0373 (5)	0.070 (3)
087	-0.1400 (5)	0.6307 (5)	0.0593 (3)	0.065 (2)
O88	-0.1390 (6)	0.6997 (5)	-0.0128 (4)	0.082 (3)
089	-0.0343 (6)	0.7266 (6)	0.0627 (3)	0.084 (3)
N91	0.7159 (8)	0.7441 (9)	0.6706 (5)	0.092 (4)
092	0.6414 (6)	0.7231 (5)	0.6316(3)	0.076 (3)
O93	0.7240 (6)	0.7056 (6)	0.7126 (4)	0.105 (4)
094	0.7607 (7)	0.8004 (7)	0.6568 (4)	0.115 (4)
N96	0.6764 (8)	0.4859 (9)	0.6834 (5)	0.097 (4)
097	0.6367 (5)	0.5321 (6)	0.7129 (3)	0.081 (3)
O98	0.6692 (6)	0.5161 (6)	0.6372 (4)	0.097 (3)
099	0.7171 (7)	0.4209 (8)	0.7006 (4)	0.128 (4)
	Table 2 Salas	ad acomatri	a paramatars	$(\stackrel{\circ}{\Lambda} \circ)$

Table 2. Selected geometric parameters (A, °)

Co1—N26	2.05(1)	Co2—O83	2.37(1)
Co1-N31	2.072 (8)	Co2—O87	2.020 (7)
Co1-072	2.024 (9)	Co2—O88	2.373 (9)
Co1-073	2.396 (8)	Co3—N11	2.09(1)
Co1-077	2.039 (8)	Co3—N66 ⁱ	2.055 (9)
Co1-078	2.37 (1)	Co3092	2.002 (9)
Co2N46	2.06(1)	Co3	2.425 (9)
Co2-N51	2.07 (1)	Co3097	1.991 (8)
Co2—O82	2.059 (8)	Co3—O98	2.53 (1)
N26-Co1-N31	106.3 (4)	N51-Co2-O88	154.3 (3)
N26Co1072	115.4 (4)	O82Co2O83	55.1 (4)
N26-Co1-073	90.1 (3)	O82—Co2—O87	135.4 (3)
N26Co1077	95.9 (4)	O82—Co2—O88	93.2 (3)
N26-Co1-078	153.4 (3)	O83Co2O87	89.2 (3)
N31-Co1-072	95.7 (4)	O83Co2O88	89.7 (3)
N31-Co1-073	152.7 (4)	O87—Co2—O88	57.3 (3)
N31-Co1-077	113.5 (3)	N11-Co3-N66	113.9 (4)
N31-Co1-078	86.9 (3)	N11Co3O92	106.3 (4)
072-Co1-073	57.2 (3)	N11-Co3-093	85.7 (4)
072-Co1-077	129.2 (3)	N11-Co3-097	101.8 (4)
072Co1078	85.3 (4)	N11-Co3-098	157.0 (3)
073-Co1-077	85.6 (3)	N66 ¹ Co3O92	97.6 (4)
073-Col-078	87.7 (3)	N66'-Co3-O93	151.9 (4)
O77-Co1-078	57.5 (4)	N66'-Co3-O97	110.0 (4)
N46-Co2-N51	104.6 (4)	N66 ¹ —Co3—O98	80.9 (4)
N46Co2O82	95.9 (4)	O92-Co3-O93	56.2 (3)
N46-Co2-083	150.3 (3)	O92—Co3—O97	127.8 (4)
N46-Co2-087	112.4 (4)	O92Co3O98	88.0 (4)

N46-Co2-088	85.8 (4)	O93Co3O97	83.7 (3)
N51-Co2-O82	108.7 (4)	O93-Co3-O98	87.7 (3)
N51-Co2-083	92.0 (4)	O97Co3O98	55.6 (4)
N51-Co2-087	97.0 (4)		

Symmetry code: (i) 1 + x, y, 1 + z.

Only Co and S atoms were refined anisotropically; all the other non-H atoms were refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: Xtal ADDREF SORTRF (Hall, Flack & Stewart, 1992). Program(s) used to solve structure: Xtal SIMPEL. Program(s) used to refine structure: Xtal CRYLSO. Molecular graphics: PLUTON (Spek, 1992). Software used to prepare material for publication: Xtal BONDLA CIFIO.

The authors are indebted to Mr S. Gorter for his assistance in the collection and processing of the diffraction data.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1163). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. Xtal3.2 User's Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.

Neenan, T. X., Driessen, W. L. & Reedijk, J. (1995). Inorg. Chim. Acta. In the press.

Spek, A. L. (1992). PLUTON92. Molecular Graphics Program. University of Utrecht, The Netherlands.

Acta Cryst. (1996). C52, 61-63

Neodymium Hexacyanocobaltate(III) **Tetrahydrate**

DONALD F. MULLICA, PAUL K. HAYWARD AND ERIC L. SAPPENFIELD

Chemistry Department, PO Box 97348, Baylor University, Waco, Texas 76798-7348, USA

(Received 20 April 1995; accepted 24 July 1995)

Abstract

Neodymium hexacyanocobaltate(III) tetrahydrate, Nd-Co(CN)₆.4H₂O, crystallizes in the orthorhombic space group Cmcm. The structure consists of octahedrally coordinated Co atoms and eight-coordinate Nd atoms linked by non-linear cyanide bridges, which produce an undulation throughout the polymeric array. Two water molecules are coordinated to the Nd atoms and